Note on q-Extensions of Euler Numbers and Polynomials of Higher Order

نویسندگان

  • Taekyun Kim
  • Lee-Chae Jang
چکیده

In [14] Ozden-Simsek-Cangul constructed generating functions of higher-order twisted (h, q)-extension of Euler polynomials and numbers, by using p-adic q-deformed fermionic integral on Zp. By applying their generating functions, they derived the complete sums of products of the twisted (h, q)-extension of Euler polynomials and numbers, see[13, 14]. In this paper we cosider the new q-extension of Euler numbers and polynomials to be different which is treated by Ozden-Simsek-Cangul. From our q-Euler numbers and polynomials we derive some interesting identities and we construct q-Euler zeta functions which interpolate the new q-Euler numbers and polynomials at a negative integer. Furthermore we study Barnes’ type q-Euler zeta functions. Finally we will derive the new formula for ” sums products of q-Euler numbers and polynomials” by using fermionic p-adic q-integral on Zp. 2000 Mathematics Subject Classification 11B68, 11S80 Key wordsEuler numbers, Euler polynomials, Generalized Euler numbers, Generalized Euler polynomials, q-Euler numbers and Euler polynomials, q-zeta function, Multiple q-Euler polynomials

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NOTE ON THE GENERALIZATION OF THE HIGHER ORDER q-GENOCCHI NUMBERS AND q-EULER NUMBERS

Cangul-Ozden-Simsek[1] constructed the q-Genocchi numbers of high order using a fermionic p-adic integral on Zp, and gave Witt’s formula and the interpolation functions of these numbers. In this paper, we present the generalization of the higher order q-Euler numbers and q-Genocchi numbers of Cangul-Ozden-Simsek. We define q-extensions of w-Euler numbers and polynomials, and w-Genocchi numbers ...

متن کامل

Interpolation Functions of q-Extensions of Apostol's Type Euler Polynomials

The main purpose of this paper is to present new q-extensions of Apostol’s type Euler polynomials using the fermionic p-adic integral on Zp. We define the q-λ-Euler polynomials and obtain the interpolation functions and the Hurwitz type zeta functions of these polynomials. We define qextensions of Apostol type’s Euler polynomials of higher order using the multivariate fermionic p-adic integral ...

متن کامل

On the q-Extension of Apostol-Euler Numbers and Polynomials

Recently, Choi et al. 2008 have studied the q-extensions of the Apostol-Bernoulli and the ApostolEuler polynomials of order n and multiple Hurwitz zeta function. In this paper, we define Apostol’s type q-Euler numbers En,q,ξ and q-Euler polynomials En,q,ξ x . We obtain the generating functions of En,q,ξ and En,q,ξ x , respectively. We also have the distribution relation for Apostol’s type q-Eul...

متن کامل

On Multiple Interpolation Functions of the Nِrlund-Type q-Euler Polynomials

and Applied Analysis 3 Remark 1.2. In 1.6 ; we easily see that lim q→ 1 F r q t, x 2 ∞ ∑ m 0 −1 m ( m r − 1 m ) e m x t 2e ∞ ∑ m 0 −1 m ( m r − 1 m ) e 2e 1 et r F r t, x . 1.7 From the above, we obtain generating function of the Nörlund Euler numbers of higher order. That is F r t, x 2e 1 et r ∞ ∑ n 0 E r n x t n! . 1.8 Thus, we have lim q→ 1 E r n,q x E r n x . 1.9 cf. 21 . Hence, we have F r...

متن کامل

Some identities on the weighted q-Euler numbers and q-Bernstein polynomials

Recently, Ryoo introduced the weighted q-Euler numbers and polynomials which are a slightly different Kim’s weighted q-Euler numbers and polynomials(see C. S. Ryoo, A note on the weighted q-Euler numbers and polynomials, 2011]). In this paper, we give some interesting new identities on the weighted q-Euler numbers related to the q-Bernstein polynomials 2000 Mathematics Subject Classification 11...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008